
www.manaraa.com

Biophysical properties of the clinical-stage
antibody landscape
Tushar Jaina,1, Tingwan Sunb,1, Stéphanie Durandc, Amy Hallc, Nga Rewa Houstonc,d, Juergen H. Nette, Beth Sharkeye,
Beata Bobrowicze, Isabelle Caffryb, Yao Yub, Yuan Caob, Heather Lynaughb, Michael Brownb, Hemanta Baruahd,
Laura T. Grayd, Eric M. Kraulandd, Yingda Xub,2, Maximiliano Vásqueza,2, and K. Dane Wittrupa,b,c,d,e,2

aDepartment of Computational Biology, Adimab LLC, Lebanon, NH 03766; bDepartment of Protein Analytics, Adimab LLC, Lebanon, NH 03766; cDepartment
of Molecular Biology, Adimab LLC, Lebanon, NH 03766; dDepartment of Antibody Discovery, Adimab LLC, Lebanon, NH 03766; and eDepartment of
High-Throughput Expression, Adimab LLC, Lebanon, NH 03766

Edited by James A. Wells, University of California, San Francisco, CA, and approved December 13, 2016 (received for review October 2, 2016)

Antibodies are a highly successful class of biological drugs, with
over 50 such molecules approved for therapeutic use and hun-
dreds more currently in clinical development. Improvements in
technology for the discovery and optimization of high-potency
antibodies have greatly increased the chances for finding binding
molecules with desired biological properties; however, achieving
drug-like properties at the same time is an additional requirement
that is receiving increased attention. In this work, we attempt to
quantify the historical limits of acceptability for multiple bio-
physical metrics of “developability.” Amino acid sequences from
137 antibodies in advanced clinical stages, including 48 approved
for therapeutic use, were collected and used to construct isotype-
matched IgG1 antibodies, which were then expressed in mamma-
lian cells. The resulting material for each source antibody was
evaluated in a dozen biophysical property assays. The distribu-
tions of the observed metrics are used to empirically define bound-
aries of drug-like behavior that can represent practical guidelines
for future antibody drug candidates.

monoclonal antibody | developability | biophysical properties |
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Target binding is the predominant first concern in development of
any drug. However, once a lead molecule attains the desired

potency of biological modification, a suite of characteristics termed
“developability” assumes critical importance. For monoclonal anti-
bodies, these properties include high-level expression, high solubility,
covalent integrity, conformational and colloidal stability, low poly-
specificity, and low immunogenicity. The high cost of failing any of
these criteria at a late stage in drug development has led to con-
siderable efforts at predicting developability on the basis of sequence
motifs and experimentally determined biophysical properties (1–15).
In a landmark study of small-molecule drugs over 2,000 mol-

ecules with United States Adopted Names (USAN) designations
and known to have oral availability were collected and compu-
tationally analyzed (16). A simple set of thresholds, encapsulated
as the “Lipinski rule of fives,” was formulated and has been used
by many to prioritize small molecules for entry into clinical de-
velopment. To date, analogous guiding principles for antibody
drugs have not emerged—we therefore endeavor here to do so.
By analogy to the Lipinski effort, we first collected the sequences
of antibodies that had reached at least phase-2 trials and had
USAN or WHO International Nonproprietary Names (INN)
designations (137 in total as of the start of this project). As a
common basis for comparison of intrinsic variable domain phe-
notypes we expressed each antibody as the human IgG1 isotype
and formulated them in simple Hepes-buffered saline. Each
antibody was then subjected to a battery of 12 different bio-
physical assays in common use for developability assessment.
Unexpectedly, for many of the measures the distribution of values

was not symmetrically Gaussian, but instead was long-tailed, with
several antibodies exhibiting values significantly higher (more prob-
lematic) than the mean. Because all antibodies in this study have
been developed past phase 1, this result suggests that many of the

currently available metrics suffer from a propensity for falsely
predicting development failure. However, stratifying the data-
set according to stage of development reveals that the number
of such “red flags” (defined below) decreases for those molecules
furthest along in the process, with approved antibodies trending
toward fewer warnings.

Results
Sequence Characteristics of Antibody Drugs. To compare antibody
variable domain properties within a common context the chosen
set of 137 antibodies was expressed as human IgG1 isotype (al-
lele *01) with standard constant regions for kappa and lambda
(alleles IGKC*01 and IGLC2*01, respectively) as appropriate.
This necessarily means that the exact isotypes, let alone full chain
sequences, of many of these antibodies are different from those
of the actual drugs—however, comparisons strictly on the basis
of variable domain differences are made possible by this study
design. Perfectly replicating biological drug substances is noto-
riously complex and a field unto itself concerned with this task
has emerged, known as biosimilar development. Creating over
130 biosimilars is clearly beyond the intended scope of this work.
However, by reporting data for published sequences this study
will enable others to replicate the results as well as perform their
own sequence/function correlation analyses.

Significance

In addition to binding to a desired target molecule, all antibody
drugs must also meet a set of criteria regarding the feasibility of
their manufacture, stability in storage, and absence of off-target
stickiness. This suite of characteristics is often termed “develop-
ability.” We present here a comprehensive analysis of these
properties for essentially the full set of antibody drugs that have
been tested in phase-2 or -3 clinical trials, or are approved by the
FDA. Surprisingly, many of the drugs or candidates in this set
exhibit properties that indicate significant developability risks;
however, the number of such red warning flags decreases with
advancement toward approval. This reference dataset should help
prioritize future drug candidates for development.
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The antibodies chosen for this study are listed in Dataset S1; 48
antibodies were built from variable region sequences found in
clinically approved antibodies (two of them approved so far only
outside the United States), 42 are in the phase-3 or phase-2/3 stage,
and the remaining 47 are in phase 2. A total of 124 have kappa light
chains, and 13 are lambdas. Fifty-eight are classified as “fully hu-
man” (with -UMAB suffix) and 67 as “humanized” (with –ZUMAB
suffix), and 12 have at least one “fully” nonhuman variable region
(–XIMAB, –XIZUMAB, or –MONAB suffix). The variable region
sequences for these antibodies are presented in Dataset S2.

Brief Description of Assays. The criteria applied in selecting the suite
of assays were twofold. First, a peer-reviewed publication exists of it’s
being used for therapeutic antibody characterization, or it is a gen-
erally used assay (e.g., titers). Second, the assay was amenable to
characterizing hundreds of antibodies and consumed <1 mg per assay
of material. As such, it is more likely that these or related assays
would be used in the early stages of an antibody discovery cascade.
Assays performed in this study included assessment of antibody self-
interaction by AC-SINS (affinity-capture self-interaction nanoparticle
spectroscopy) (3, 9, 11) and CSI-BLI (clone self-interaction by bio-
layer interferometry) (7), a variety of metrics of cross-interaction such
as binding PSR (poly-specificity reagent) (8), or BVP (baculovirus
particle) (4), CIC (cross-interaction chromatography) (1), and classic
ELISA with a panel of commonly used antigens (17). Data on ex-
pression titer in HEK cells, melting temperature (Tm) of the Fab,
hydrophobic interaction chromatography (HIC) and a related assay,
SGAC-SINS (salt-gradient affinity-capture self-interaction nano-
particle spectroscopy) were also collected (18), as were data on
standup monolayer adsorption chromatography (SMAC) (13). Fi-
nally, the percentage of monomeric species assessed by size-exclusion
chromatography (SEC) in the context of an accelerated stability (AS)
study completes the panel of assays. The experimental measurements
obtained for the antibodies used in this study are presented in
Dataset S3.

Biophysical Property Distributions Are Long-Tailed. The distributions
of measured values for 12 biophysical measures are presented in
Fig. 1. We had assumed a priori that the success of these mol-
ecules in overcoming the considerable hurdles of high-level ex-
pression, formulation, and acceptable phase-1 clinical trial safety
would yield a set of antibodies with uniformly favorable bio-
physical properties. However, for most of the measures we find
this not to be the case, with a small but significant population of
molecules exhibiting unusually unfavorable values for one or

more measures. An example would be the PSR measurement,
high values of which have been shown previously to correlate well
with pharmacokinetics (PK) in mice (19, 20). In the earlier work
(see, for example, figure 2A of ref. 19), a rough PSR cutoff above
which antibodies tended to present faster clearance in mice was
observed; when converted to the scaled values used in the present
study, the cutoff is around 0.25. It is thus interesting that 33 of the
137 antibodies in the examined set have PSR values above this
previously established cutoff. Such non-FcRn-, non-target-mediated
systemic clearance is likely due to simple stickiness in dissemi-
nated tissues (19, 21, 22). It is therefore surprising that 24% of
these antibodies, which have reached at least phase-2 stage, exhibit
such high values for this nonspecific stickiness criterion. One pos-
sibility is that the actual drug substance exhibits different properties
due to its particular expression, purification, formulation, or non-
IgG1 isotype (11 of the 29 have IgG2 or IgG4 isotypes). To test this
hypothesis, we measured the full biophysical property set of nine
vialed monoclonal antibody drugs and found that, for the most part,
the numerical values for these measures are not significantly dif-
ferent from those assessed with our preparations (Table S1); the
respective PSR values show a linear correlation, r2, of 0.99.
The evidence is definitive that some unfavorable values within

the ranges observed do not represent an insurmountable obstacle
for ultimately successful clinical development of a given mole-
cule. However, it would be difficult to argue that unfavorable
values for any of these measures could not present at least some
difficulties for successful drug development. Perhaps the flaws
indicated by these attributes were overcome through creative
and/or exhaustive efforts in cell-line development, cell-culture
optimization, and formulation to result in a vialed drug that
meets minimum standards for advancement. However, of course
the impact of such fixes ends at the moment of parenteral ad-
ministration, at which point negative impact on drug pharma-
cokinetics might result in negative clinical trial outcomes [see,
for a possible example, the case of briakinumab vs. ustekinumab
(20, 23)]. Intravenous administration, which still dominates the
approved set, is less demanding of high concentrations and thus
may be more tolerant of suboptimal aggregation behavior. Also,
target-mediated clearance, a more “intrinsic” feature of the bi-
ology of the molecule, may dominate overall PK in patients.

Clustering of Biophysical Property Values. It is likely that there is
considerable redundancy in the information obtainable from the
dozen measurements presented here. To examine this possibility,
we performed an unsupervised clustering of the data and obtained

Fig. 1. Histograms of 12 different biophysical assay values for 137 monoclonal antibodies in commercial clinical development. An arrow above each panel
indicates the direction of unfavorable values (e.g., higher PSR is unfavorable, because it indicates greater nonspecific binding activity by the antibody
assayed.) Most of the distributions are asymmetrically long-tailed in the unfavorable direction.
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the clusters shown in Fig. 2A. The Spearman rank order correlation
of each pair of measures is presented graphically in Fig. 2B. Based
on this analysis we have chosen five such clusters for further ex-
amination: (PSR, CSI, AC-SINS, CIC), (SGAC100, SMAC, HIC),
(ELISA, BVP), (AS), and (HEK titer, Tm). On first inspection, it
may be surprising to find the biological parameter of cell culture
expression titer correlating most closely with the thermodynamic
state variable of Tm. However, in fact this same correlation has
been observed previously for secretion in yeast (24, 25) and mam-
malian cells (26). It should be noted that the titers obtained from
transient HEK expression may not closely reflect productivity in
optimized cell lines by stable transfection of typical production host
cells such as CHO or murine myeloma lines. The assumption here is
that for most cases, nevertheless, HEK transition titers are captur-
ing intrinsic, sequence-dependent properties of an antibody that
make it more likely that it will express in high levels. The observed
correlation to Tm, consistent with literature precedent, supports the
notion that this assumption is reasonable. A cluster is observed
among SGAC100 (18), SMAC (13), and HIC, which are assays that
measure the tendency of antibodies to either self-associate, or
associate with a column matrix, under salt-stress conditions.
The multiantigen nonspecificity ELISAs closely correlated with

BVP assays that use the same ELISA plate readout—indicating a
potential common plate-binding aspect to these assays. With re-
spect to the largest cluster of (PSR, CSI, AC-SINS, CIC), we had
a priori expected PSR and CIC to cluster together as measures
of cross-interaction, and CSI and AC-SINS to cluster together as
self-interaction measures. Because this was not the case, it can
be inferred that this group of protein-binding assays measures a
common property that differs to some extent from thermodynamic
stability (HEK titer, Tm), hydrophobic interaction (SGAC100,
SMAC, HIC), long-term aggregation propensity (AS), or ELISA
plate binding (ELISA, BVP). It is unexpected that an AS did not
quantitatively correlate closely with any of the other four group-
ings, although the limited dynamic range in the data for these
largely well-behaved molecules limits the ability to explore cor-
relation to other assays. Nonetheless, 19/24 of the antibodies with
an AS result outside the acceptable range (discussed below) also
had at least one out-of-range value within the (PSR, CSI, AC-
SINS, CIC) and (SGAC100, SMAC, HIC) sets.

Threshold Warning Flag Approach. To reconcile these assays’ dis-
covery of purported developability defects with the success of these
antibodies’ progression into clinical trials, we reframed the existence

Fig. 2. (A) Hierarchical clustering of biophysical properties. (B) Matrix and clustering representation of biophysical properties. The lower triangle shows
Spearman correlation coefficients, and the upper triangle shows a graphic representation of the same correlation values. The values for SGAC100 were
negated before calculating the clustering and correlation coefficients, because its direction of favorability is opposite to HIC and SMAC. The eccentricity of the
ellipses is proportional to the magnitude of the correlation coefficient. The slope of the major axis has the same sign as the correlation coefficient.

Table 1. Thresholds of biophysical properties derived from analysis on samples corresponding
to the 48 approved antibodies

Group Assay Worst 10% threshold Units (flag)

Group 1 PSR 0.27 ± 0.06 None (>)
ACSINS 11.8 ± 6.2 Nanometers (wavelength change) (>)
CSI 0.01 ± 0.02 BLI response units (>)
CIC 10.1 ± 0.5 Retention time (min) (>)

Group 2 HIC 11.7 ± 0.6 Retention time (min) (>)
SMAC 12.8 ± 1.2 Retention time (min) (>)

SGAC-SINS 370 ± 133 Salt concentration (mM) (<)
Group 3 BVP 4.3 ± 2.2 Fold-over-background (>)

ELISA 1.9 ± 1.0 Fold-over-background (>)
Group 4 AS 0.08 ± 0.03 Monomer percentage loss per day (>)
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of high values for any of the measures in a given cluster simply as a
“red flag,” indicating the potential presence of problems that per-
haps had been resolved during bioprocess and formulation devel-
opment. In keeping with the threshold used by Lipinski et al. (16),
we chose the cutoff of 10% worst values among approved drugs as a
threshold for a warning flag (Table 1). When antibodies at different
stages of development were examined for the number of warning
flags there was a progressive decrease in warning flags with ad-
vancement (Fig. 3A). Approved drugs had the fewest flags, with
65% (31) possessing no flags at all. By contrast, that number
dropped to 40% (19) for the antibodies still being tested in phase-
2 clinical trials, and nearly 32% (15) had over two warning flags in
the developability assays. Examination of the trend in Fig. 3A gives
the impression that lower warning flags correspond to higher
probability of clinical trial advancement; however, of course
phase-2 and -3 trials evaluate therapeutic efficacy rather than the
abstract biophysical properties measured in these developability
assays. The statistical significance of the results is further detailed
in Fig. 3B, where distinct distributions between the approved set
and the rest are demonstrated for the (PSR, CSI, ACSINS, CIC)
and (ELISA, BVP) groups of assays. It is possible that excessive
promiscuous antibody interactions previously shown to correlate
with accelerated systemic clearance (4, 19, 21, 22) also limit effi-
cacy by decreasing the amount of drug on target. In fact, an
analogous trend has been consistently observed for small-molecule
drugs, whereby lipophilicity and molecular weight decrease with
clinical advancement (27, 28), a trend also attributed in part to
affect relative drug levels on target. The Tm was not considered
for the above analysis because the values were close to normally
distributed and within an acceptable range for development. Ad-
ditionally, we also excluded the titer measurements from transient
HEK expression, because these measurements may not reflect
production in stable mammalian cell lines, as discussed earlier. In
addition, the distribution of boundary violation counts using only
antibodies known to have been developed as IgG1 (77 of the 137)
looks like the distribution obtained with the entire set (Fig. S1),
suggesting that isotype differences are not a dominant factor to
these results.
It has been noted previously that antibodies discovered via phage

display of fragments can display unfavorable biophysical charac-
teristics relative to antibodies cloned from immunized mice (26, 29).
Examination of the provenance of the antibodies in our dataset is
consistent with this observation (Fig. 3C), in that the number of
flags for antibodies engineered at some point by phage display are
significantly higher than those derived from mammalian sources.

Antibody Clustering by Property Set. To investigate whether the an-
tibodies would partition into distinct sets based on measurements in
the selected assays we performed hierarchical clustering on the
dataset. The calculation of pairwise distances between antibodies us-
ing the vector of biophysical properties is detailed in Supporting In-
formation. The result of these calculations is shown in Fig. 4, where we
have overlaid rectangles corresponding to five observed distinct clus-
ters. The two largest clusters consisted of 80 and 22 antibodies, re-
spectively. The largest cluster exhibited more generally favorable
biophysical properties as evidenced by the distribution of red flags
shown in Fig. S2. This “clean” cluster includes 34 of the 48 approved
antibodies in our dataset, indicating that the general property of
exhibiting one or fewer red flags is associated with clinical success. The
second-largest cluster was composed predominantly of phase-2 and
phase-3 antibodies. The distribution of assay measurements for each
cluster is shown in Fig. S3. The clustering was robust to a change in
the parameters used for the calculation of pairwise distances (Fig. S4).

Discussion
In earlier publications from our laboratories we had described
and emphasized the importance of a subset of high-throughput
assays applicable to very large numbers of candidate antibodies
(7, 8, 11, 18, 19). It is thus both practical and instructive to see
how these assays, in particular, delineate the space of antibody
drugs actually in clinical development. A natural application of

the main results in this paper would be a prescription, analogous
to Lipinski’s rule of fives, to filter or at least rank-order a set of
candidates for possible development as therapeutics.
A consequence of the increased pace of development of an-

tibody therapeutics has been the establishment of so-called
platform approaches for process development and formulation
(30, 31). Particularly favorable developability profiles for a given
candidate are more likely to fit within the constraints of given
platforms (30). Conversely, and in the best-case scenario, mol-
ecules with characteristics outside what is typically favorable are
likely to require additional resources for establishment of suc-
cessful process development and formulation. How the cutoffs
defined in this work may relate to the features of specific de-
velopment platforms is the subject of ongoing research. A closely
related point is how establishment of early-stage developability
assessment may affect the ultimate success rate of antibodies in
the clinic (of course, related to factors distinct from the biomedical

Fig. 3. (A) Histogram showing number of flags as a function of antibody status
in the clinic. For each antibody, a cluster of biophysical properties contributes a
value of one to the number of flags if any constituent assay exceeds the
thresholds listed in Table 1. (B) Statistical significance analysis of flags per cluster
of biophysical properties as a function of clinical progression. (C) Histogram
showing number of flags as a function of origin of antibody; +Phage indicates
antibodies discovered directly or assisted by phage selection or screening.
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hypothesis a given drug is testing). Judging from the literature
discussion on developability, one can estimate that these concepts
may have begun to become prevalent around 2010 or later (1).
Because our set of antibodies have started at least phase-2 clinical
trials, it follows that the clear majority, if not all, of them started
development before 2010 (for example, the associated patent
priority dates on the sequences of the antibodies in this study are
all before midyear of 2009).
A key goal of this work was to establish cutoffs for acceptable

values of each of the assays performed, derived from the anti-
body drug space defined here. However, we were surprised to
find values asymmetrically far into the undesirable tail of the
histogram for many antibodies seemingly advancing success-
fully through clinical trials. Although we cannot rule out that

some of these poor properties may be attributable to isotype
differences with the actual drug product, or particulars of ex-
pression, purification, and formulation, we found that formu-
lated drug versions of several of these antibodies gave values
very similar to those of the preparations we tested (Table S1).
Despite these exceptions, it is clear that the great majority of
approved antibodies cluster within a priori favorable ranges of
parameter space. We have used 90th percentiles in these met-
rics, using this subset of the data, to define a zone of most fa-
vorable properties. This is analogous to the original Lipinski
work where reasonable boundaries were likewise drawn (16).
Although the choice of a given percentile cutoff value is arbi-
trary, it is noteworthy that unsupervised hierarchical clustering
also reveals natural groupings into “clean” and “less-clean”

Fig. 4. Clustering of antibodies based on biophysical properties. The rectangles are ordered by decreasing cluster size. The approved, phase-3, and phase-2
antibodies are shown in red, brown, and green, respectively. The colors in the clustering matrix follow the same scale as in Fig. 2B.
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subsets (Fig. 4). As observed in Fig. 3A, the number of drug
boundary violations exhibited by a given IgG tends to decrease
with the stage of clinical advance of the corresponding drug
(from which variable region sequences were obtained).
Because no single unfavorable assay we examined definitively

predicted failure to advance to at least phase-2 clinical trials, a
more holistic approach of weighted consideration of multiple
biophysical properties is necessary. The practical problem faced
by an antibody drug developer can be broken down to two parts:
(i) which from among a small set of lead antibody molecules
exhibiting similar bioactivity is the one predicted to be most
likely to successfully navigate the subsequent development
process and (ii) whether any danger signals apparent for that
lead molecule are sufficiently menacing to necessitate further
protein engineering or formulation efforts before advancing the
program. We propose that weighted consideration of about a
dozen biophysical assays with complementary and overlapping
characteristics, such as those reported here, can be a useful tool
for making these decisions.

Materials and Methods
Curated Set of Antibodies. For antibodies, and biologicals in general, unlike for small
molecules, full disclosure of chemical structure (amino acid sequence) did not be-
come a requirement for attaining INN before 2006; thus, many antibody molecules
that entered development in the early time frame do not have an “official” source
for sequence information. Nonetheless, based on analysis of peer-reviewed and
patent literature, a number of sequences for those antibodies were likewise col-
lected. Details of the process including sources for all of the sequence information
are included in Supporting Information.

Antibody Expression, Production, and Purification. The 137 antibodieswere expressed
in HEK293 cells. The VH and VL encoding gene fragments (Integrated DNA
Technologies) were subcloned into heavy- and light-chain pcDNA 3.4+ vectors
(ThermoFisher). The variable region sequences are listed in Dataset S2. All mAbs
were expressed as IgG1 isotype. The corresponding vectors were cotransfected into
HEK293 suspension cells. After 6 d of growth, the cell culture supernatant was
harvested by centrifugation and passed over Protein A agarose (MabSelect SuRe;
GE Healthcare Life Sciences). The bound antibodies were then washed with PBS
and eluted with buffer (200 mM acetic acid/50 mM NaCl, pH 3.5) into 1/8 volume

2 M Hepes, pH 8.0. The final products were buffer-exchanged into 25 mM Hepes
and 150 mM sodium chloride, pH 7.3.

Approved Antibody Drugs. The antibody drugs Remicade, Simponi, Keytruda,
Entyvio, Mabthera, Humira, Xgeva, Yervoy, and Avastin (corresponding to
infliximab, golimumab, pembrolizumab, vedolizumab, rituximab, adalimu-
mab, denosumab, ipilimumab, and bevacizumab, respectively) were ordered
frommyoderm.com. All of these clinical samples were diluted down to 1 mg/mL
with corresponding assay buffers before analysis. All samples were analyzed
by reducing liquid chromatography-MS to confirm sequence match to both
light chain and heavy chain after consideration of any differences in the
constant regions (Dataset S3).

Biophysical Measurements. Protocol details for CIC, PSR binding assay, CSI-BLI,
AC-SINS, SGAC-SINS, Tm using differential scanning fluorescence (DSF), SMAC,
accelerated stability SEC slope, HIC, BVP assay, and ELISA are all provided in
Supporting Information.

Statistical Analysis. All statistical analysis was completed with the assistance of R
version3.2.4. Althoughmanymetrics suchas TmandHIC seemed to shownormal or
log-normal distributions, there were many that did not, precluding the use of
Pearson’s correlations to analyze the full dataset. As such, Spearman’s rank corre-
lations were calculated for all pairwise combinations of antibody characteristics.
Therefore, one can only conclude correlation between relative rankings on the
assays, but not directly between the assays themselves. To assess statistical signifi-
cance of correlations, an exact P valuewas calculated for each pairwise comparison.
Two-by-two contingency tables were constructed for approval status vs. presence
of flags within each group of assays. Fisher’s exact tests for count data were per-
formed on these contingency tables and an exact P value (Fig. 3B) was calculated
for the null hypothesis that the true odds ratio is unity. Additionally, an
identical analysis was carried out for each assay individually, and the results are
summarized in Table S2. To further assess whether the distributions of the
assay measurements differed between the approved and nonapproved anti-
bodies, the two-sample Anderson–Darling (33) test was performed. Table S3
lists the P values for rejecting the null hypothesis that the measurements arise
from a common underlying distribution. The error bars in Table 1 and Fig. S5
were estimated using bootstrapping as implemented in the package boot.
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